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Let K be a compact subset of a real, separable Hilbert space H and let C(K)
denote the family of continuous functions (operators) from H into H together with
the uniform norm topology

Ilf - gil = max Ilf(x) - f(x) II.
xeK

We prove that the Weierstrass Theorem holds on C(K). That is, the continuous
polynomial operators on H are dense in C(K). A polynomial operator

Px = L o + L1x + L 2x 2 + ... + Lnxn

of degree n is defined by means of the k-Iinear operators Lie ; Lkxk denotes Lie
applied to the k-tuple (x, x, ... , x).

I. INTRODUCTION

Let X and Y be normed linear spaces and let K be a compact subset of X.
Let C(K) denote the space of continuous functions from X to Y restricted to
K, where C(K) carries the uniform norm topology

II! - gil = max Ill(x) - g(x)ll.
reeK

In the event X = Y is the real line, the classical Weierstrass Theorem states
that the family of polynomials on X is dense in C(K). If X = En, Y = E,
where Eis the real line, a straightforward application of the Stone-Weierstrass
Theorem proves that the polynomials in n real variables, n = 1,2,... , are
dense in C(K). In this paper we prove a Hilbert space analog to the Weier­
strass Theorem. That is, we prove (Theorem 5.5) that if X = Y = H is a
real, separable Hilbert space, then the family of all continuous polynomials
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from H to H is dense in C(K). This necessitates the definition of a polynomial
(polynomial operator) in a linear space.

2. POLYNOMIALS IN A LINEAR SPACE

Let Xbe a linear space over the field of real (complex) numbers. Let k ~ 1
and let Xk denote the direct product

XxXx"'xX
~--'/~---

k times

A k-linear operator M, on X, is a function on Xk into X which is linear in each
of its arguments separately. That is, for each i = 1,2,... , k,

M(xl , X2 ,... , Xi + Yi ,... , Xk)

= M(xl , ... , Xi ,... , Xk) + M(XI ,... , Yi ,... , Xk)

and

A O-linear operator L o , on X, is a constant function on X into X. That is, for
some fixed Y E X, LoX = Y for all X E X. We shall identify a O-linear operator
Lo with its range so that Lox = Lo for all x E X.

Examples

1. Let k(s, tl , t2 , ... , tn) be a square integrable function on the unit cube in
En+! so that

1 II 1I '" I I k(s, tl , ... , tn )1 2 dtl ... dtn ds < 00.
000

Then

is an n-linear operator on £2[0, 1].

2. For x E Y = C"'[a, b], define

dx
Dx = (jf+ x.
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Then the operator

n

N(xi , X 2 , ••• , X n) = TI DXi
i~l

is an n-linear on Y.

3. Let Cn be the set of all n-tuples (Xl' X2 , ... , xn) of complex numbers. Let
(m i .i

1
.i

2
••• i), i, A ,... ,jp = 1,2,... , n, be a (p + I)-dimensional matrix of

complex numbers. Given points xl, x2, ... , xP in cn, where

define

where

ai =

Then M is a p-linear operator on Cn •

Given a k-linear operator M on X(k :): 1) and an X E X, we set

Mxk = M(x, X, ... , x).
~

k times

For each k = 0, 1,... , n, let L k be a k-linear operator on X. Then, the operator
P on X into X, given by

is called an n-th degree polynomial operator.

3. MATRIX REPRESENTATIONS OF POLYNOMIALS

Let (2(n) denote the set of square summable sequences of real (complex)
numbers of length n (n may be infinity) with the usual inner product. The
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natural isometry l/J between (2(n) and a separable Hilbert space H of dimen­
sion n is a basis for the discussion of matrix representations of operators. If
A is a continuous linear operator on H into Hand l/J is the natural embedding
of H into {2 (n),then there is a naturally induced linear operator A' on (2(n,)
given by

which is a coordinate transformation; the operator A takes the form of a
matrix (aij)fj=1 . The correspondence between continuous operators A' and
matrices (aij) is, however, only one-way when H is infinite dimensional. That
is, not every matrix (aij) corresponds to a linear operator on (2(n). However,
if A' = (aij) is what is known as a matrix representation of a linear operator
A on H, then A' is a linear operator on {2 and both A and A' are continuous.
See [1] and [4].

Completely analogous questions arise for k-linear operators and, hence,
for polynomial operators (polynomials) on a separable Hilbert space. Since
the proof of Theorem 5.5 requires only results on matrix representations of
k-linear operators on finite dimensional Hilbert spaces (unitary spaces), we
restrict ourselves to this case.

Let {¢j}j'=1 be an orthonormal basis for a unitary space H. Let M be a
k-linear operator (k ~ 1) on H. Then M is said to have a matrix representa­
tion (mj.il.i..... ,i) with respect to {¢j}j'=1 if, for each k elements xl, x2,... , x k in
H,

n

M(xl, x2,... , xk) = L dj¢j ,
j~1

where

and

n

Xl = L X~l¢il '
i=1

n

X
2

= L X~.¢i. '
i~1

n

X
k

= L X:k¢i k '
i=1

It is a simple matter to prove:
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THEOREM 3.1. Let H be a unitary space with an orthonormal basis {rPi}~=l .
Then

(a) All k-linear operators on H, k = 0, 1,2,... , are continuous.

(b) Each k-linear operator M, on H, k = 1,2,... , has a unique matrix
representation (mj.i1 .....i

k
) with respect to {rPi}~l and

where ( , ) denotes inner product.

(c) Every matrix (mj.i1.i
2
.....i)'j' i1 , ... , ik = 1,2,... , n, is a matrix

representation of a k-linear operator.

The proof, being simple, is omitted.
At this point, we should remark that a O-linear operator L o , on H, can be

assigned, too, a matrix representation. For if y = L:~l CirPi (c1 , C2 , ... , Cn

being constants) is that fixed point of H for which

for all x E H, we can associate with L othe "one dimensional matrix" (Ci)' We
shall call (Ci) a matrix representation of Lo. Conversely, with each n-tuple
(c1 , C2 , ... , cn) of constants we can associate a O-linear operator Lo , on H,
given by

n

Lo = Lox = L CirPi'
i=l

4. THE WEIERSTRASS THEOREM FOR REAL UNITARY SPACES

Let {rPj}~ be an orthonormal basis for a real unitary space H and let F be a
continuous function (operator) on H into H. Let x E H, so that

n n

X = L (x, rPk) rPk = L XkrPk .
k~l k=l

Then, since F(x) E H, we have

n

F(x) = L h(X1 , X2 , ... , x n ) rPi ,
i~l

where each of the h is a continuous function on En.

(1)
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Now, let P be a polynomial on H. Then, if x = I:7~1 Xiepi ,

n

Px = L gi(Xl , X2 ,... , x n) epi'
i=l

where each of the g/s is a real polynomial in n variables. That is, if P is

of degree 0: gi(Xl , X2 ,... , x n) = Ci ,

n

of degree 1: gi(Xl , X2 ,... , x n) = L aiixi + Ci ,
i~l

n n

of degree 2: gi(Xl, X2 ,... , x n) = L biikXkXi + L aiixi + Ci
i.k~l i=l

of degree m: g;(xl , X2 ,... , x n)

m n

= Ci + L L ai.h.i...... ikxik ... xi.Xi i •

k~l jl'j2 ..... jk~1

(2)

This follows directly from Theorem 3.1 and from the definition of a matrix
representation of a O-linear operator. Namely, if

then

is the matrix representation ofLik ~ 1) and (Ci) is the matrix representation
of Lo •

The polynomials p(xl , X 2 , ... , x n) in n real variables are dense in q£),
where £ is a compact subset of En. Using the natural embedding

¢;(X) = (Xl' X2 , .., xn )

of H into [2(n), we have that if K is compact in H, then ¢;(K) = £ is compact
in [2(n). For each e > 0 and for each i, there exists a polynomial

for which

IIJi - gi II = max I.fi(x) - gi(X)j < e/nl
/
2

•
iJ)EK

(3)
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Let N be a positive integer such that, for i = 1,2,... , n, and for suitable
constants Ci , ai,i

1
,i

2
, ... ,i

p
,

N n

gi(Xl , X2 ,... , x n) == Ci + L L ai,h,i2 ..... i p
Xi p ... Xi2

Xi1 •

p~l il'i2..... ip ~1

Invoking Theorem 3.1. (c), the matrix (ai,i
1
...i) corresponds to a k-linear

operator L k on H. Define the polynomial P by

n

Px = L o + L1x + L2x2+ ... + LNxN = L gi(Xl , X2 ,... , x n) cPi ,
i=l

where Lo is the O-linear operator L7~1 CicPi .
It then follows from (3) that

n

II F(x) - Px II~ = L Ih(x1 , •.. , xn) - gi(Xl ,... , xn)J2
i~l

n

~ L Ilh - gi 112 < t:
2.

i~l

Thus,

IIF- PII = maxIIF(x) - PxllH < t:,
xEK

and we have proved

THEOREM 4.1 (The Weierstrass Theorem for Unitary Spaces). The poly­
nomials on H, restricted to a compact subset K of the real unitary space H, are
dense in the set C(K) of continuous functions on H into H restricted to K,
where C(K) carries the uniform norm topology.

5. EXTENTION OF THE WEIERSTRASS THEOREM TO A REAL,
SEPARABLE HILBERT SPACE

Now let H be a real, infinite dimensional but separable Hilbert space with
a complete, orthonormal basis {cPk}~' and let Pn denote the projection of H
onto Hn = span{cPl' cP2 ,... , cPn}. That is

n

Pnx = L (x, cPk) cPk .
k~l
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So Pn is a continuous, linear operator. Let F be a continuous function on H
into H and define the function Fn , on H, by

Clearly, Fn is continuous and of finite rank. This enables us to prove

LEMMA 5.1. Let K be a compact set in H. Given € > 0, there exists a
polynomial P on H, offinite rank, such that maXxETc II Fnx - Px II < E.

Proof Let Kn = Pn(K). Then Kn is compact. LetFn be the restriction of
Fn to H n . Then Fn is a continuous function on Hn into H n and, as such, by
Theorem 4.1, can be uniformly approximated by a polynomial P, of degree
N, on H n into H n so that

(4)

for all xE Kn • Here P has the form

Px = £0 + £iX + ... + £NXN.

Now extend P to all of H by defining

Clearly, P is of finite rank and

where Lo = £0 and £kXk = Lkxk(k = 1,2,... , N), x = Pnx. Thus Pn being
linear, P is a polynomial on H. Thus

II Px - Fnx II = II PPnx - PnFPnx II
= II Px - PnFPn2x II
= II Px - PnFPnx II
= II Px -Fnxll < E

for all x in K.
To prove the Weierstrass Theorem for H, we must show that, given any

compact set K CHand E > 0, there exists a polynomial P on H such that
II F - P II < E in the uniform norm topology on C(K). But

II F - P II ~ II F - Fn II + II Fn - P II .
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By Lemma 5.1, we can make the second summand on the right less than E/2.
We shall prove that the same is true for the first summand. We begin by
recalling

THEOREM A (Dini's Theorem). Let K be compact in H and let Un} be a
sequence of real-valued, continuous functions on K which converges to a con­
tinuous function f on K. Then, if fn(x) ;;0 fn+l(x) for all x E K and for
n = 1, 2, ... , then fn converges uniformly to f on K.

LEMMA 5.2. Let K be compact in H. Then Pnx converges uniformly to x on
K.

Proof of the Lemma. Let fn(x) = II x - PnX II. It is clear that the se­
quence Un} satisfies the conditions of Theorem A.

LEMMA 5.3. Let K be compact in H and let F be a continuous function on
H into H. Then, the sequence {FPnx} converges uniformly to Fx on K.

Proof Let E > O. Then, since F is continuous on H, for each x in K there
exists a Ox > 0 such that

E
II Fx - Fy II < 2:

where Nix) = {y E H : II x - y II < o}. The family {Nax/2(x) : x E K} is an
open cover of K. So there exists a finite subcover

{N8(i)(X i): i = 1,2,... , n}, where o(i) = oxp.

Let 0 = min{o(O: 1 ~ i ~ n}. LetxEKandyEHbesothatllx-YII <0.
Then, there exists some Xi such that II x - Xi II < o(i).
But then

y - Xi II ~ II y - x II + II x - Xi II < o(i) + 0(0 = Ox

Thus,

II Fx - FXi II < E/2

and

II Fy - FXi II < E/2;

so that

IIFx -Fyll < E.
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By the uniform convergence of PnX to x on K, there exists an no such that,
for all x E K and n ;;::: no,

It x - PnX II < D.

But then, for all such x, n,

jlFx -FPnxll < E.

LEMMA 5.4. Let F be continuous on H and let K be compact in H. Then,
given E > 0, there exists an integer no > 0 such that

max II Fx - Fnx II < E
rteK

whenever n ;;::: no .

Proof

II Fnx - Fx II = II PnFPnx - Fx II
~ II PnFPnx - PnFx11 + II PnFx- Fxll

~ II Pn II . II FPnx - Fxll + II PnFx -Fxll

= II FPnx -Fxll + II PnFx -Fxll·

Now apply Lemmas 5.2 and 5.3.
We next combine Lemmas 5.1 and 5.4. That is, let K be compact in Hand

let F be continuous on H. Given E > 0, there exists an integer n > 0 such
that

max II Fx - Fnx II < E/2.
rteK

But by Lemma 5.1, there exists a continuous polynomial P such that

max II Fnx - Px II < E/2.
rteK

Combining (5) with (6), we have

I[Fx - Pxll < E,

for all x E K. That is, we have proved

(5)

(6)

THEOREM 5.5. (The Weierstrass Theorem for Real, Separable Hilbert
Spaces). Let H be a real, separable Hilbert space. The family of continuous
polynomials on H, restricted to a compact set K of H, is dense in the set C(K)
of continuous functions on H into H restricted to K, where C(K) carries the
uniform norm topology.
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6. FINAL REMARKS

The classical Weierstrass Theorem has a complex analog. In fact, it can
be shown that the family of polynomials in n complex variables and in their
conjugates is dense in C(K), where K is a compact subset of zn, Z denoting
the complex plane. Consequently we conjecture that to secure a "Weier­
strass Theorem" in complex Hilbert spaces would require the introduction
of "conjugation operators." For example, if L k is a k-linear operator (k ~ 2)
then we would need to include among the polynomials operators, the opera­
tors

L n,p k - L -n-p - L (- - )
k X - kXX - k~~'

n times p times

where n + p = k.
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